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Abstract
For equilibrium states of spin-reversal-invariant homogeneous classical spin
systems, rigorous implications are shown from the notion of macroscopic
occupation of the spin density to spontaneous spin symmetry breaking and
long-range order, and vice versa.

PACS number:  05.20−y

The set of observables of a classical spin system on a d-dimensional lattice Z
d consists of the

commutative algebra A generated by the one-site observables {σx/x ∈ Z
d}. In other words

each system observable, denoted by X or X(σ), is of the type∑
n

∑
x1,...,xn

cx1,...,xn
σx1σx2 ...σxn

,

where x1, . . . , xn ∈ Z
d and cx1,...,xn

are complex numbers. The spin variables σx take the
values ±1.

Homogeneous spin systems are defined by local Hamiltonians H�, one for each finite
subset � of the lattice, of the form

H� = ��⊆�φ(�)σ�, (1)

where we used the notation σ� = ∏
x∈� σx . The translation invariance is guaranteed by the

interaction energy condition φ(� + a) = φ(�) holding for all lattice points a and subsets �

of Z
d .
The global spin-flip operation � maps each of the spin variables σx onto −σx . Also for

� any finite subset of lattice points, we denote by �� the local spin-flip operation of all spins
σx with x in �.

Not only translation invariance of the systems is imposed, we also assume the spin-flip
invariance of our systems, i.e. we assume that all local Hamiltonians satisfy the condition
�(H�) = H� for all � ⊂ Z

d .
Clearly, the best-known prototype model system is the d-dimensional Ising model:

H� = −J
∑

〈x,y〉;x,y∈� σxσy , where 〈x, y〉 stand for the nearest neighbor sites x and y.
We are interested in the equilibrium states, which are expectation-valued maps or

probability measures on the set of functions A of these systems.
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First, one can consider the limit Gibbs states, denoted by ωβ , with β being the inverse
temperature, and naturally defined by the formula

ωβ(X(σ)) = lim
�→Z

d

∑
{σ=±1;σ∈�} X(σ) exp{−βH�(σ)}∑

{σ=±1;σ∈�} exp{−βH�(σ)} . (2)

There are many possible thermodynamic limits � → Z
d , e.g. depending on the geometrical

forms of �’s, yielding several possibly different limit Gibbs states. By definition, any of these
Gibbs states, denoted by the same symbol ωβ , is homogeneous and spin-flip invariant.

Any state ω of the spin system is an equilibrium state, if it satisfies the energy-entropy
balance (EEB) criterion at β, i.e. if for each fixed finite lattice subset �̃ and any non-negative
observable X � 0, the following inequality holds:

lim
�

ω(X(σ)(��̃H�(σ) − H�(σ))) � 1

β
ω(X(σ)) ln

ω(X(σ))

ω(��̃(X(σ)))
. (3)

These conditions are handy tools as criteria for equilibrium states (prob. measures). In fact,
they are nothing but the set of Euler equations for the basic free energy density functional
variational principle of statistical mechanics of these systems. The reader should not be
surprised by the inequalities instead of equalities, because it is proved that the inequalities are
equivalent to the Euler equalities (see also [1]). The latter ones are however practically less
manageable in the applications.

For all these reasons, the EEB criterion holds as firm general defining criteria for
equilibrium states.

One shows [1] that each limit Gibbs state satisfies this EEB criterion. Each Gibbs state
ωβ is clearly homogeneous and spin-flip invariant (ωβ ◦ � = ωβ). But there may exist
more homogeneous states ω satisfying the EEB criterion. Some of them may break the �-
symmetry invariance of the system {H�}. If this happens, one speaks about the occurrence of
spontaneous symmetry breaking (SSB).

For any homogeneous state ω of the system, the magnetization of the state is given by

ω(σy) = lim
�→Z

d
ω

(∑
x∈� σx

|�|
)

, (4)

where y is any arbitrary lattice point and |�| stands for the volume or the number of lattice
points of �.

Moreover, the reader checks that averages of local observables (functions), say A, always
exist (see the theorem of Kovacs–Szuecs in [2, chapter 4]) within the GNS representation [2]
of a homogeneous state. For later use, the GNS representation is also called the Hilbert space
representation of the set observables. The Hilbert space H is the closure of the set A with
respect to the scalar product (X, Y ) ≡ (X
ω, Y
ω) ≡ ω(X∗Y ), where 
ω = 1 stands for the
the unit observable. With this in mind, if τa denotes the translation action τa(σx) = σx+a over
distance a, then for all observables X, Y one has

ω(XAY) = lim
�

ω

(
X

(
1

|�|
∑
a∈�

τaA

)
Y

)
(5)

defining the average observable A ≡ lim�
1

|�|
∑

a∈� τaA.

Now take A = σx for some point x; then A = σx ≡ σ and formula 4 becomes

ω(σy) = ω(σ). (6)

Now by Schwartz inequality, one gets

ω(σy)
2 = ω(σ)2 � ω(σ 2) (7)
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expressing the following property. Namely, if ω is a homogeneous state breaking the symmetry,
i.e. if ω(σy) �= 0, then ω(σ 2) > 0.

Clearly, any state ω with the property ω(σ 2) > 0 may be called in a natural sense a state
with macroscopic occupation of spin density. In the rest of this communication, we show the
following statement.

Statement. If one has a limit Gibbs state ωβ showing a macroscopic occupation of spin density,
hence with the property ωβ(σ 2) > 0, then there exist spin symmetry breaking equilibrium
(satisfying (3)) states ω+ and ω−, which satisfy the equality

ω(σy)
2
± = ω±(σ )2 = ω±(σ 2), (8)

i.e. they satisfy formula (7) but with the equality sign. Also, the Gibbs state is an equal weight
convex combination of the states ω±.

The implications of this equality sign case are as follows. If one has spontaneous symmetry
breaking states ω± and the equality sign in (8), then these states have the property of showing
the long-range order property

ω±(σ 2) = |ω±(σ )|2 > 0. (9)

This property is similar to the notion of ‘off-diagonal long-range order’ (see [3, 4]), a notion
which has been introduced in the context of quantized fields.

The statement also expresses that, if one has a Gibbs state ωβ showing a macroscopic
occupation of spin density, then the symmetry breaking states ω± always exist and they show
long-range order.

Construction of the states ω±. We start from the given limit Gibbs state ωβ which is
homogeneous, spin-flip invariant and satisfies the property ωβ(σ 2) > 0. In particular, spin-
flip invariance implies that ωβ(σx1 ...σx2n+1) = 0 for all integers n. Consider the average spin
function σ (5) in the representation induced by the state ωβ . This average is a real function
with values in the interval [−1, 1]. Consider the polar decomposition (see e.g. [5]) of this
average function

σ = U
√

σ 2. (10)

As ωβ(σ 2) > 0, one has σ �= 0 or σ is a non-trivial function in this representation. U is a real

function taking the values ±1 or U 2 = 1 on the support of σ . One can also write U = σ/
√

σ 2.
U can also be extended by 1 outside the support, such that U 2 = 1 everywhere.

Define the new spin variables for all x in the lattice

σ̃x = Uσx ≡ η(σx),

where η is a morphism of the algebra A generated by σ ′s into itself. The new variables σ̃x

generate a new representation of the original observables. Now define the states ω± as follows:
for each observable X,

ω+(X) = ωβ(η(X)), ω−(X) = ωβ(η(�(X))). (11)

Properties of the states ω±.

(i) It is readily checked, using the definition formulae 11 based on the given Gibbs state
ωβ , with β finite, that the states ω± satisfy the EEB criterion 3. Therefore, the newly
constructed states are equilibrium states.

(ii) One computes that

ω±(σx1 · · · σx2n
) = ωβ(σx1 · · · σx2n

)
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implying that the new states and the Gibbs state coincide on the even monomials in σ ’s.
Also, as U 2 = 1,

ω+(σx1 · · · σx2n+1) = −ω−(σx1 · · · σx2n+1)

implying altogether that for all observables X holds:

ωβ(X) = 1
2ω+(X) + 1

2ω−(X). (12)

The given Gibbs state ωβ is written as an equal weight convex combination of the two
constructed states ω±.

(iii) From the definition formulae 11, one again computes the formula

ω±(σ ) = ±ωβ(
√

σ 2). (13)

Using now the Hilbert space representations (GNS representation [2]) of the states ω±,
respectively ωβ :

ω±(X) = (
±, X
±);ωβ(X) = (
β,X
β).

Then

ωβ(
√

σ 2)2 = |ω±(σ )|2 = |(
±, U
√

σ 2
±)|2 = |( 4
√

σ 2
±, U
4
√

σ 2
±)|2,
which by Schwartz inequality is majorized by

� (
±,
√

σ 2
±)2 = ωβ(
√

σ 2)2.

This implies that the vector 
± is proportional to the vector U
√

σ 2
± or that there exists
a complex number κ such that

κ
± = U
√

σ 2
± = σ
±.

One gets

|ω±(σ )|2 = |(
±, σ
±)|2 = |κ|2 = (σ
±, σ
±) = ω±(σ 2) = ωβ(σ 2) > 0.

The last inequality follows from the property of macroscopic occupation of spin density for
the state ωβ . This relation proves that the states ω± have the property of showing SSB as well
as that of showing long-range order (8).

All this proves the statement.

Remarks. The reader commented on the canonical-model-independent construction (11) of
the SSB states. He surely remembers the usual ways of showing the existence of spontaneous
symmetry breaking states for the Ising systems, which consist of fixing plus or minus symmetry
breaking boundary conditions. There are also the plus combined minus boundary conditions
leading to non-homogeneous states with an interface structure. Non-homogeneous states are
outside the scope of this communication. In [6], one finds the main results for Ising systems.
The ± boundary condition technique is considered to give a physical interpretation of the
origins of the symmetry breaking. On the other hand, one can also consider external field
perturbations, which tend to zero at the end of the argument. Model computations [7] show
boundary condition dependences on the various volume rates at which this limit is taken to
be zero. In any case not only for quantum systems but also for classical systems, boundary
conditions can show a complicated picture (see e.g. [8]). The construction (11) of the SSB
states is boundary conditions independent. It is based on the notion of macroscopic occupation
of spin density for a limit Gibbs state.
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Finally, we stress that our construction of SSB states yields an immediate and explicit
relation between a limit Gibbs state (ωβ) and the SSB states. For convenience, we rewrite the
SSB states once more in the following form: for any n ∈ N, one has

ω+(σx1 · · · σxn
) = ωβ

((
σ√
σ 2

)n

σx1 · · · σxn

)
ω−(σx1 · · · σxn

) = (−1)nωβ

((
σ√
σ 2

)n

σx1 · · · σxn

)
.
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